

Camila Ortega R. Ph.D.
Associate Director, Analytical Services
March, 2025



## The use of orthogonal methods for mRNA characterization

- **Comprehensive Analysis**: Different methods can provide complementary information, offering a more complete understanding of mRNA characteristics and behavior.
- **Detection of Anomalies**: Orthogonal methods can help identify discrepancies or anomalies that might be missed when using a single method, ensuring more robust and thorough analysis.
- Validation of Results: Confirming findings through various techniques strengthens the validity of the conclusions drawn from the data.







## mRNA critical quality attributes and analytical methods

#### **Integrity and Purity**

- Gel electrophoresis
- Capillary Electrophoresis
- IP-RP-HPLC
- SEC-HPLC
- AX-HPLC

#### Identity

- Sequencing (Sanger, NGS)
- RT-PCRA
- "Fingerprinting" by LC-MS/MS
- Base composition Assay

#### **Content**

- UV-Vis Spectroscopy
- RT-qPCR
- RT-dPCR
- IP-RP-HPLC

# Capping efficiency LC-MS LC-UV Capping efficiency LC-MS LC-UV Tail length LC-MS LC-UV

#### **Functionality**

- In-vitro translation/Western blot (Cell Free assay)
- Cell-based assays (contract out)

#### **Impurities**

- DNA: qPCR
- Protein: Nano Orange; BCA
- NTPs: AX-HPLCSolvents: GC
- dsRNA: Immunoblot, ELISA

#### **Others**

- Appearance: USP <1>, <790>
- pH: USP <791>

#### Safety

- Endotoxin: USP <85>
- **Bioburden:** USP <61>, <62>, <1115>





## mRNA critical quality attributes and analytical methods

#### **Integrity and Purity** Identity Content Gel electrophoresis Sequencing (Sanger, NGS) UV-Vis Spectroscopy Capillary Electrophoresis RT-PCRA RT-qPCR "Fingerprinting" by LC-MS/MS IP-RP-HPLC RT-dPCR SEC-HPLC • Base composition Assay IP-RP-HPLC AX-HPLC 5'Cap **Tail length Capping efficiency** Open reading frame LC-MS LC-MS LC-UV LC-UV **Functionality** In-vitro translation/Western blot (Cell Free assay) Cell-based assays (contract out) **Others Impurities** Safety • DNA: qPCR **Appearance:** USP <1>, <790> Endotoxin: USP <85> • Protein: Nano Orange; BCA **pH:** USP <791> Bioburden: USP <61>, <62>, NTPs: AX-HPLC <1115>



Solvents: GC

dsRNA: Immunoblot, ELISA



## Assays for the analysis of poly(A) tail at TriLink

# **Industry Standard:** RNase digestion Intact mRNA 1-RNase digestion Digested mRNA Poly(A) tail **AAAAAAA** 2-LC-UV/MS Digested Poly(A) tail **mRNA**



## Segmented poly(A) tails may enhance protein expression



"Use of segmented poly(A)2 × 60\_6 construct significantly increased protein levels post-transfection in a modification independent manner when compared to poly(A)120 and ACH benchmarks".

Trepotec et al. 2019. Segmented poly(A) tails significantly reduce recombination of plasmid DNA without affecting mRNA translation efficiency or half-life. RNA. 4:507-518

Liu et al. 2019. Poly(A) inclusive RNA isoform sequencing (PAIso-seq) reveals wide-spread non-adenosine residues within RNA poly(A) tails. *Nature Communications*. 10:5292





## Cutting specificity of the RNases used in the assay

#### **Industry Standard:** RNase digestion



RNases typically used in the assay:

- RNase T1: digest RNA at G residues.
- RNase A: digest RNA at C and U residues.
- Mixture of RNase T1/RNase A: digest RNA at G, C and U residues.





## Assays for the analysis of poly(A) tail are complementary



## Case study with a segmented poly(A) tail





### Case Study: DNAzyme cleaved mRNA

Segmented poly(A) tail: UAGGAAG 30A GCAUAUGACU 70A





The poly(A) tail is digested into two main poly(A) populations based on the RNase specificity confirming the presence of the non-adenosine residues.



#### Case Study: DNAzyme cleaved mRNA

Segmented poly(A) tail: UAGGAAG 30A GCAUAUGACU 70A







DNAzyme cleavage results in one poly(A) tail distribution that matches the theoretical sequence and confirms the full poly(A) tail length.





## Key takeaways



#### **RNase digestion**

- Two poly(A) tail distributions were observed in the range of  $A_{30}$  and  $A_{70}$ , confirming the presence of non-adenosine residues between the homopolymeric tail distribution.
- This assay did not confirm the full length of the poly(A) tail.



#### **DNAzyme cleavage**

DNAzyme cleavage confirmed the full length of the poly(A) tail and its distribution, including the non-adenosine residues.



The methods provided complementary information enabling full characterization of the complex segmented tail.



## Acknowledgments

#### Quality Control and Analytical Services Team



#### Analytical Development Team



R&D Biology



**Khaled Yamout** 



