Harnessing Platform Methods for mRNA Quality Control: Challenges, Solutions, and Future Perspectives.

USP mRNA Virtual Summit

Joining Forces to Advance the Quality of mRNA Therapeutics March 11-12, 2025

Mohamad Toutounji, Ph. D - Molgenium -

Why mRNA?

- Industry growth: \$50B+ market by 2030 (roots in COVID-19 vaccines).
- Therapeutic expansion: Oncology, gene therapy, personalized medicine.
- QC as the Bottleneck: Scalability demands platform approaches.
- Roadmap: Challenges Platform Solutions Future-ready QC.

Key Challenges in mRNA QC

1. Raw Material Variability

Lipid sources: Lipid batches from different vendors altered LNP size.

Impact: Failed specs, costly delays.

2. Analytical Gaps

Integrity: Ribogreen/qPCR lacks resolution for fragmented mRNA.

dsRNA: ELISA false positives/positives due to antibody cross-reactivity and assay range.

Poly(A): NGS bias in tail length quantification.

Key Challenges in mRNA QC: Analytical Methods

Challenges in Developing Analytical Platform Methods

Method Performance Expectations

Defining Method Performance Expectations

Purpose

 To validate that analytical methods consistently produce data that are reliable and conform to the predefined performance.

Method Performance Expectations

Performance Metrics in Development

What is Fit-to-Platform Assessment?

Definition

Evaluating the suitability of a new analytical method or process to a pre-established platform technology.

Ensures the method aligns with platform standards for performance, compatibility, and reproducibility.

Key Goals

Determine if the method meets platform expectations (e.g., sensitivity, accuracy).

Optimize the platform's capacity to address product-specific challenges.

Significance

Reduces development time by leveraging prior platform knowledge.

Streamlines validation by focusing on critical gaps or enhancements.

<u>Fit-to-Platform Assessment – Key Components</u>

Alignment with Platform Capabilities

- Is the new method compatible with the platform's standard design space?
- Does it meet the required performance metrics, including sensitivity, specificity, and robustness?

Gap Analysis

- Identification of areas where the new method deviates from platform standards.
- Example: Adaptation required for novel analytes or detection targets.

<u>Fit-to-Platform Assessment – Key Components</u>

Risk Assessment

- Quantifying the potential impact of method-platform misalignment on overall product quality.
- Focus on critical quality attributes (CQAs) that could be compromised.

Optimization

 Adjustments to enhance specificity, linearity, and robustness to meet platform requirements.

<u>Case Study – Optimizing Specificity in dsRNA Detection</u>

Background

- dsRNA Detection is a critical step for ensuring mRNA DS safety, as dsRNA is an impurity linked to immune responses.
- ELISA-based assay.

Challenge

- Standard kits showed cross-reactivity with unrelated nucleic acids, compromising specificity.
- Achieving high specificity while maintaining sensitivity was critical for assessing product safety.

<u>Case Study – Optimizing Specificity in dsRNA Detection</u>

Approach to Optimization

- 1. dsRNA quantification using ELISA and Fit-to-Platform Evaluation
 - Evaluated the compatibility of the dsRNA detection kit with the existing analytical platform.
 - Identified specificity as the primary limitation through gap analysis.
- 2. Optimizing Specificity
 - Adjusting Kit Design: Modified capture and detection antibodies to reduce crossreactivity.
 - Validation with Controls: Introduced a broader range of negative controls (e.g., single-stranded RNA, DNA) to confirm absence of non-specific binding.

dsRNA Impurities Control & Detection

Add 100µl standard/sample per well Add 100µl dsRNA Detection Antibody 37°C, 1h Wash the plate with 1×Wash Buffer at 300µl/well Add 100µl substrate per well Incubate at 37°C for 15min in the dark Add 50µl Stop Reagent per well, and Detect the OD

NovoFast dsRNA ELISA Kit, Cat. No.: RD017

- One-step detection takes only 1.5 hours
- Sensitivity: 0.047ng/ml
- Detection range: 0.047-3ng/ml

ssRNA μg/ml	Background dsRNA Con. (ng/ml)	dsRNA Con. (ng/ml)	Theoretical dsRNA Con. (ng/ml)	Measured dsRNA Con. (ng/ml)	Recovery%
mRNA1 1019nt 0.2 μg/ml	0.061669	0.000	0.062	0.062	
		0.023	0.085	0.079	6%
		0.188	0.249	0.239	4%
		0.750	0.812	0.764	6%
mRNA 2 2156 nt 1.0 μg/ml	Below detection limit	0.000	Below detection limit		
		0.046	0.046	0.057	24%
		0.375	0.375	0.349	7%
		3.000	3.000	2.715	9%
mRNA3 1019nt 2.0 µg/ml		0.000	0.609	0.609	
	0.609262	0.023	0.632	0.579	8%
		0.188	0.797	0.689	14%
		0.750	1.359	1.112	18%

Enzymes (10µg/ml)	Background dsRNA Con. (ng/ml)	dsRNA Con. (ng/ml)	Theoretical dsRNA Con. (ng/ml)	Measured dsRNA Con. (ng/ml)	Recovery%
Capping System Enzymes	Below the detection limit	0.046	0.046	0.055	19%
		0.375	0.375	0.359	4%
		1.500	1.500	1.415	6%
RNase inhibitor	Below the detection limit	0.046	0.046	0.041	11%
		0.375	0.375	0.326	13%
		1.500	1.500	1.286	14%
DNase I	Below the detection limit	0.046	0.046	0.053	16%
		0.375	0.375	0.392	4%
		1.500	1.500	1.628	9%
T7 RNAP	Below the detection	0.046	0.046	0.049	7%
		0.375	0.375	0.333	11%
	iii ii c	1.500	1.500	1.268	15%
iPPase	Below the detection	0.046	0.046	0.051	11%
		0.375	0.375	0.360	4%
	iii ii	1.500	1.500	1.428	5%
RNase R	Delements and the eff	0.046	0.046	0.038	18%
	Below the detection limit	0.375	0.375	0.331	12%
	mint.	1.500	1.500	1.200	20%

Accelerated Stability of RD017

Design Space and Robustness

What is Design Space?

• Defined by ICH Q8 as the multidimensional range of input variables and process parameters that ensure method performance.

For dsRNA detection:

 Includes variables such as antibody concentration, reaction time, buffer composition, and temperature.

What is Robustness?

- The method's capacity to remain unaffected by small variations in operating conditions.
- Ensures reliable performance under real-world conditions.

Design Space and Robustness

Defining the Design Space for dsRNA Detection - Key Variables

Explored

Design Space and Robustness

Robustness Testing for dsRNA Detection - Key Stress Conditions Evaluated

Definition

 Total Analytical Error (TAE): A statistical measure that combines systematic error (bias) and random error (imprecision) to assess the overall performance of an analytical method.

Significance

- Provides a holistic view of method reliability.
- Ensures the method delivers results within acceptable accuracy and precision limits.

Components

1. Systematic Error (Bias)

Deviation of the measured value from the true value.

2. Random Error (Imprecision)

Variability observed between repeated measurements.

Calculating Total Analytical Error

TAE=|Bias|+z×Imprecision (SD)

Where:

Bias = Mean of measured values - True value.

z = Standard score for a chosen confidence level (e.g., <math>z = 1.96 for 95%).

SD = Standard deviation of measurements.

Interpreting TAE

- Compare TAE to predefined Total Error Allowance (TEA).
- A method is acceptable if:

TAE≤TEA

Calculating Total Analytical Error for the dsRNA deetction methdo

True Value (spike): 1 ng/mL dsRNA.

Measured Mean: 0.97 ng/mL (Bias = -0.3 ng/mL).

Standard Deviation (SD): 0.25 ng/mL.

TAE Calculation

 $TAE=[-0.3]+(1.96\times0.25)=0.3+0.49=0.79 \text{ ng/mL}.$

TEA Benchmark: Defined TEA: ±1 pg/mL.

Conclusion: Since $\overline{TAE(0.79)} < \overline{TEA(1)}$, the method is acceptable.

Challenges and Best Practices in TAE Evaluation

Challenges

- Selecting appropriate TEA limits for complex matrices.
- Balancing sensitivity with precision in low-concentration analytes.
- Addressing variability introduced by operator or equipment changes.

Best Practices

- Define Clear TEA Limits: Align with product-specific and regulatory requirements.
- Perform Rigorous Testing: Use multiple replicates and conditions to ensure reliability.
- Iterative Optimization: Adjust method parameters to minimize bias and imprecision.

Leveraging Prior Knowledge for Platform Validation Across Development Stages

Role of Prior Knowledge

Preclinical/IND Stage

Utilizing prior knowledge to minimize experimental burdens in early stages

Phase 1 and Phase 2

Using historical data to optimize validation protocols

Phase 3/Commercial

Ensuring method reliability through thorough validation or verification

Regulatory Considerations for Analytical Platforms

Expectations for Analytical Platforms

Take Home Message

Thank You for Your Attention!

"Together, we pave the way for reliable and innovative drug solutions"